http://goroskop.biz.ua

Конструкция парашюта типа «Крыло». Парашют крыло


Особые случаи при прыжках с парашютом типа Крыло

Самое главное в любом прыжке с парашютом — безопасность.

В небе под куполом парашютист находится около 3 минут. И при возникновении нештатной ситуации времени на принятие решения будет очень мало или не будет вообще. Поэтому еще на земле парашютисты до автоматизма отрабатывают навыки действий в особых случаях.

Приоритеты при прыжке с парашютом

  1. Открыть парашют.
  2. Открыть парашют на заданной высоте, вне зависимости, стабильны вы или нет.
  3. Открыть парашют в стабильной позиции, чтобы облегчить раскрытие.
  4. Проверить купол, чтобы убедиться что он рабтает и контролируем.
  5. В случае необходимости ввести запасной — соблюдая все процедуры, в случае сомнений в работоспособности и управляемости основного.
  6. Приземлиться на открытую площадку, долгая прогулка назад лучше опасного приземления.
  7. Приземлиться безопасно, быть готовым к жесткой посадке, ноги вместе, ступни параллельно земле.

При любой нештатной ситуации первое действие — контроль высоты. Высота принятия решения на отцепку — 600 метров.

Отцепка

Процедура отцепки

  1. Контроль высоты
  2. Найти взглядом подушку отцепки, взяться двумя руками
  3. Перевести взгляд на кольцо запасного парашюта
  4. Отцепить основной парашют
  5. Выдернуть кольцо запасного парашюта

Отказы основного парашюта

Отказом парашюта является любое функционирование купола, не приводящее к нормальной скорости снижения, или потери управления куполом. Отказы вызываются одним или комбинацией из нижеследующих факторов: плохая укладка, неправильное положение тела на раскрытии или отказом техники. Часть отказов случается лишь иногда; парашюты хороши, но не совершенны на 100%. Отказ основного может быть разделен на две основных категории: из ранца ничего не вышло, и это полный отказ; купол вышел, но с ним не все в порядке, и это частичный отказ. По причине возможности отказа в основах безопасности предписывается высота раскрытия не ниже 1000 метров для студентов. Для тандемов эта высота равняется 1300 метрам. Для лицензированных парашютистов минимальная высота раскрытия 800 метров.

Если вы выходите из ЛА на высоте 1000 метров, то ваша начальная вертикальная скорость равна 0 м/с и вы начнете ускоряться до тех пор пока не достигнете скорости свободного падения. Если у вас нет парашюта, то путь до земли займет 22 секунды. Если у вас частичный отказ, вы получите некоторое торможение вашим парашютом, и это время увеличится. Но даже в этом случае, учитывая время реакции, необходимо открыть запасной не ниже чем на 500 метрах. Основному парашюту требуется около 3-4 секунд для раскрытия, а запасной раскрывается еще быстрее. При скорости свободного падения в стабильной позиции лицом вниз равной примерно 180 км/ч (максимальная для данной позиции), четыре секунды превратятся в 250 метров.

Самоотцеп одного свободного конца

  1. Контроль высоты
  2. Отцепка
  3. Запаска

Повисание на медузе

  1. Контроль высоты
  2. Отцепка
  3. Запаска

Нерасчековка камеры

  1. Контроль высоты
  2. Отцепка
  3. Запаска

Перехлест

  1. Контроль высоты
  2. Отцепка
  3. Запаска

Груша или ненаполнение купола

  1. Контроль высоты
  2. Отцепка
  3. Запаска

Дуга

  1. Контроль высоты
  2. Попытаться устранить зацеп
  3. При нехватке высоты — отцепка, запаска

Зацепление стреньги за части тела

  1. Контроль высоты
  2. Попытаться устранить зацеп
  3. При нехватке высоты — отцепка, запаска

Закрутка строп

  1. Контроль высоты
  2. Свести перед собой свободные концы
  3. Помочь телом раскручиванию купола
  4. При нехватке высоты — отцепка, запаска

Прогрессирующая закрутка

  1. Контроль высоты
  2. Отцепка
  3. Контроль высоты (если высота позволяет — стабилизироваться)
  4. Запаска

Несход слайдера

  1. Контроль высоты
  2. Расчековать стропы управления
  3. Прокачать купол стропами управления (движениями обеих рук вверх-вниз 2-3 раза)
  4. Если не получилось — отцепка, запаска

Порыв купола

  1. Проверить управляемость купола выполнением разворотов
  2. Проверить работоспособность купола во всех режимах (полная скорость, средний режим и режим торможения)
  3. Если нет уверенности в безопасном приземлении — отцепка

Обрыв строп

  1. Передний ряд (формирует лоб парашюта): при обрыве — отцепка
  2. Средний ряд (формирует сопла): при обрыве оценить состояние купола «наполнен-устройчив-управляем», если нет уверенности в безопасном приземлении — отцепка
  3. Задний ряд (стропы управления): при обрыве приземляться на задних свободных концах

Работа под двумя куполами

Биплан

  1. Оставить зачекованными стропы управления заднего парашюта
  2. Мягко управлять передним куполом
  3. Отцепка основного парашюта запрещена!
  4. Не делать подушку при приземлении

Биплан

Веер

  1. Если купола не спутаны и высота позволяет — отцепить основной купол: левой рукой отвести в сторону левый купол, правой рукой дернуть подушку отцепки
  2. Если купола спутаны — плавно управлять внутренней стороной большего купола
  3. Не делать подушку при приземлении

Веер

Колокол

  1. Немедленно отцепить купол на любой высоте!

Колокол

Столкновение под куполами с другими парашютистами

Спутывание куполов

  1. Установить контакт голосом и сообщить о своих действиях
  2. Первым отцепляется верхний парашютист
  3. Если недостаточно высоты, то оба открывают запасные парашюты, не отцепляя основных

Оборачивание куполом

  1. Установить контакт голосом и сообщить о своих действиях
  2. Первым отцепляется нижний парашютист
  3. Верхний парашютист после отцепки нижнего стаскивает материал парашюта вниз

Оборачивание куполом

Пилотирование парашютов типа «Крыло»

aviatus.ru

Aviatus: Конструкция парашюта типа Крыло

Каждый купол можно описать при помощи следующих характеристик: форма крыла, его наклон и загрузка. Первое и второе определяются конструкцией, последнее — самим пилотом. Каждая из этих характеристик определяет, как будет летать конкретный парашют. Если понимать, что означают эти характеристики, можно — даже не прыгая на этом куполе — с большой вероятностью предположить, как он будет летать. Форма крыла определяется удлинением (aspect ratio) и профилем. Удлинение — это отношение размаха (ширина между боковыми кромками) к хорде (расстояние между передней и задней кромками). Профиль представляет собой отношение высоты крыла к хорде. Наклон определяет, под каким углом к вымпельному ветру конкретная форма крыла позволит добиться лучшего соотношения летных характеристик. А загрузка — это «мощность», которую пилот решает придать системе.

Удлинение

В теории, купола с большим удлинением летают быстрее — потому что чем больше удлинение, тем меньше значение профильного сопротивления по отношению к производимой подъемной силе. Другими словами, 200-футовый девятисекционный купол имеет большую подъемную силу, чем 200-футовый семисекционник, хотя профильное сопротивление у них будет одинаковое. Почему бы тогда не сделать 200-футовый 11-секционник с очень большим удлинением?

На практике, удлинение около 3 к 1 является предельным. При большем удлинении конструктор сталкивается с несколькими проблемами. В отличие от самолетного крыла парашют не имеет жесткого каркаса и поддерживает форму за счет давления воздуха. Парашют летит хорошо только в том случае, когда наполнена каждая секция. Чем больше удлинение, тем сложнее поддерживать давление в крайних секциях. Кроме того, для поддержания правильной формы потребуется больше строп и нервюр. А это означает увеличение сопротивления.

У куполов с большим удлинением короче ход клевант и поэтому они более остро реагируют на вводы. Они склонны резче входить в свал, а при восстановлении наполняются менее равномерно, чем купола с меньшим удлинением. Чтобы начать поворот на куполе с большим удлинением требуется больше времени — но как только поворот начался, он происходит быстрее, чем на менее удлиненном куполе того же размера. Кроме того, у купола с большим удлинением будет больше частей (секций, нервюр и строп) — а значит, больше будет укладочный объем.

Сложности с поддержанием давления в секциях, увеличение сопротивления и необходимость особого контроля за раскрытием — все это привело к тому, что существующие сегодня на рынке купола с наибольшим удлинением так и не перешли границу соотношения 3/1. Удлинение большинства 9-секционных парашютов близко в 3/1; большинства 7-секционных находится в пределах от 1 до 2,2.

Какие лучше? Все имеет свою цену. 9-секционник летает быстрее, чем 7-секционник, потому что создает меньше профильного сопротивления — но у него на 20 процентов больше строп, ребер и сопел, которые увеличивают паразитное сопротивление. В 90-х годах считалось, что 9-секционники лучше планируют (т. е. у них выше аэродинамическое качество — соотношение горизонтальной и вертикально скоростей). Однако несомненные преимущества в скорости и планировании, продемонстрированные 9-секционными куполами за последнее десятилетие, можно с большой долей вероятности отнести за счет новых форм профиля, угла наклона купола (угла планирования) и более эффективной конструкции. Время покажет — создается впечатление, что новые разработки позволят 7-секционным куполам приблизиться по ряду характеристик к 9-секционным. Однако мы можем ожидать, что купола с большим удлинением все-же будут иметь более высокие показатели планирования. 7-секционники более предсказуемы в плане наполнения и в режиме свала — поэтому практически все ПЗ имеют 7 секций. Это же касается куполов для прыжков на точность, купольной акробатики и BASE — разновидностях спорта, где стабильность открытия и поведение на низких скоростях важнее, чем скорость и планирование.

Профиль

Профиль купола определяется формой нервюр — это вид купола сбоку. В общих словах — чтобы создавать подъемную силу, медленно летящее крыло должно иметь толстый профиль (объяснение этому есть в первой главе — надо только пошевелить мозгами!). Обратной стороной является то, что толстый профиль создает больше сопротивления, чем тонкий. Высота профиля парашютов для прыжков на точность и купольную составляет от 15 до 18 процентов от хорды, в то время как у высокоскоростных куполов для RW этот показатель может быть всего 10%. Хотя более тонкий профиль летит быстрее, у него меньше потенциал подъемной силы на низких скоростях, у него резче свал и острее повороты. Не менее важно искривление профиля крыла. Если центр приложения подъемной силы смещен вперед, купол будет иметь большую скорость снижения и очень стабильное наполнение. Смещение центра подъемной силы назад улучшает планирование, но ухудшает наполняемость. Сочетание такого смещения с большим удлинением будет приводить к тому, что углы передней кромки будут складываться на поворотах. Эллиптические купола призваны решить эту проблему: закругление передней кромки и уменьшение длины внешних секций увеличивает наполняемость крайних секций. Как дополнительное преимущество, эллиптические купола более отзывчивы (так как на ввод клеванты реагирует большая часть внешней кромки), что делает их очень резвыми.

Заключение

В общих чертах, форма профиля определяет следующую разницу между 7-ми и 9-ти секционными куполами одинаковой площади:

  • 7-секционный купол более предсказуем в открытии, его укладочный объем немного меньше, чем у 9-секционника аналогичной площади, он меньше подвержен отказам в виде перехлестов. В случае частичного отказа 7-секционник будет вести себя более спокойно (будет медленнее терять высоту и вообще вести себя менее агрессивно).
  • У 9-секционника будет более пологий угол планирования, что дает ему чуть большую дальность. У него «длиннее» подушка, что упрощает ее выполнение, но из приземления придется дольше «выбегать».
  • 7-секционник более стабилен на малых скоростях, дает больше «предупреждений» перед входом в свал, и более предсказуем при выходе из него.
  • У 9-секционника может быть больше горизонтальная скорость — преимущество при полете в условиях ветра.

Загрузка

Термин обозначает вес, который несет парашют. Это, наверно, самый важный фактор, определяющий летные характеристики современных парашютов. В Америке загрузка определяется как отношение фунт/квадратный фут. Значение в фунтах — это вес вас и вашего снаряжения. Квадратные футы указывает производитель (следует однако помнить, что разные производители могут использовать разные методики расчета площади, и при одинаковом весе загрузка куполов одинаковой заявленной площади от разных производителей может различаться — прим. пер.). Для расчета загрузки разделите вес в футах на площадь в квадратных футах. Например, я вешу 190 фунтов, а мое снаряжение — еще 25 (система, комбез и прочее). Вместе мой полный вес составляет 215 фунтов. Если я прыгаю с куполом в 205 квадратных футов, моя загрузка будет 1,05. Студент одного со мной веса под куполом «Манта» (288 футов) будет иметь загрузку 0,75. Другой парашютист того же веса под Сейбром-150 будет иметь загрузку 1,43. Многие производители указывают для каждого купола рекомендуемую максимальную (а иногда и минимальную) загрузку.

Как правило, чем больше загрузка, тем выше летные характеристики. При низкой загрузке купол летит и реагирует вяло. Увеличение загрузки увеличивает горизонтальную и вертикальную скорости. С увеличением скорости повороты становятся быстрее, а контроль — более чувствительным. Помните, что подъемная сила увеличивается со скоростью — высокая загрузка означает, что глубина подушки будет больше, чем при меньшей загрузке. Но поскольку все происходит намного быстрее, у вас меньше возможностей на ошибку. Чем больше загрузка, тем более опасными становятся частичные отказы. Наклон влияет на подушку таким-же образом, как на угол планирования. Купол с большим тангажем будет иметь короткую подушку, но будет более стабилен в режиме торможения и будет быстрее восстанавливаться после свала.

Существует предел, на котором полезные качества высокой загрузки начинают исчерпываться. Используя регистраторы горизонтальной и вертикальной скорости во время тестов различных современных куполов, я выяснил, что при загрузках более 1,5 единственные летные характеристики, которые продолжают улучшаться — это скорость поворотов и общая отзывчивость. Чем больше вес, тем острее угол планирования (купол быстрее теряет высоту), а горизонтальная скорость при этом не увеличивается. Для среднестатистического пилота купола загрузка начиная с 1,4, как мне кажется, не приносит положительных результатов — скорость снижения увеличивается, а горизонтальная скорость и характеристики планирования — нет. С увеличением загрузки также увеличивается скорость входа в свал (момент срыва потока). Вот несколько общих рекомендаций по загрузке куполов, существующих сегодня, в 1997 году, на рынке: Для медленных, мягких приземлений и для прыжков на площадки значительно выше уровня моря, выбирайте низкую загрузку — от 0,7 до 0,9.

Для хорошего соотношения безопасности и летных характеристик прыгайте с загрузкой 1 к 1. Хотите быстрый купол? Прыгайте с загрузкой от 1,1 до 1,3. Пилотирование купола с загрузкой больше 1,3 означает, что вы переходите в категорию испытателей — купол летит на грани своих возможностей. Профессионалы постоянно прыгают с загрузкой от 1,4 до 1,6 — но они прыгают каждый день, в одних и тех же условиях. Изменение места приземления, высоты или других факторов делают подобные загрузки спорными.

Как правило, купола из ткани нулевой проницаемости и 9-секционники более безопасны при высоких загрузках, чем 7-секционник из F-111. Парашютист, который прыгает на старом 7-секционнике с загрузкой 0,8 может, после определенной тренировки, безопасно прыгать на 9-секционнике из нулевки с загрузкой 1,1.

Наклон

Наклон и настройки парашюта имеют огромное значение для летных характеристик. Наклон — это расчетный угол планирования купола. Если опустить нос купола — возрастет скорость снижения и стабильность. Если нос наоборот поднять выше, купол станет лучше планировать — но станет при этом более подвержен влиянию турбулентности и опасности складывания. Такой купол также будет дольше наполняться после деформации. Как правило, купола для точности и купольной акробатики наклонены вниз (больший тангаж), а купола для RW — более плоские.

Длина строп управления также влияет на характеристики купола. Слишком длинные стропы управления уменьшают эффективность вводов. Это также может привести к тому, что в момент подушки пилот не сможет использовать весь потенциал купола. Если стропы слишко короткие, купол все время будет работать в режиме легкого торможения, и во время подушки его можно будет легко ввести в свал. Измените длину строп всего на один дюйм — и это серьезно изменит подушку вашего купола. Если вам сложно замедлить купол в безветренный день — есть вероятность, что ваши стропы управления слишком длинны. Если ваш купол на приземлении начинает танцевать и его легко ввести в свал — вам может иметь смысл удлинить стропы управления.

Наклон не всегда зависит только от установок производителя. С течением времени стропы растягиваются и изнашиваются. На высокоскоростных куполах изменение длины стропы на один-два дюйма имеет большое значение. Нужно периодически менять стропы, так как их износ изменяет наклон. Однако многие парашютисты, методично меняющие масло и шины на своих автомобилях, никогда не задумываются о том, что их купол тоже подвержен времени.

Материалы

Стандарным материалом для производства парашютов в 80х и начале 90х была ткань F-111 (названная так по названию фабрики, на которой она производилась). Затем на рынке стали преобладать ткани нулевой проницаемости (zero-p). По сравнению с «нулевкой» F-111 не такая дорогая и ее легче обрабатывать — что делает парашюты из нее дешевле. Их также легче укладывать, потому что они легче выпускают воздух. Однако и изнашиваются они быстрее. Купол из F-111 сохраняет свои превоначальные характеристики на протяжении первых 300 прыжков. Еще 300 прыжков он все еще будет летать неплохо, но к концу следующих 300 прыжков он потеряет много (до 20 процентов и более) от своих начальных характеристик. Немногие парашюты из F-111 годны на что-нибудь после 1000 прыжков.

«Нулевка» дороже чем F-111 и с ней тяжелее работать — поэтому купола из нулевки дороже. Однако дороговизна компенсируется несколькими преимуществами. Купола из нулевой ткани лучше держат форму и пропускают меньше воздуха, что дает им лучшие летные характеристики по сравнению с аналогичным куполом из F-111. Они также «живут» намного дольше — купола из нулевой ткани могут прекрасно летать, когда им сильно за 1000 прыжков. Недостаток — их труднее укладывать (это требует определенной привычки, которая приходит уже через пару десятков укладок). В некоторых куполах используются оба типа ткани. Это тоже замечательно работает.

Ткань

F-111

Нулевка

ДостоинстваДешеваяЛегкая в укладкеАэродинамически более эффективнаДольше живет
НедостаткиАэродинамически менее эффективнаЗаметный износ после 600-700 прыжковДорожеТяжелее укладывать

 

Стропы

Есть два основных материала для парашютных строп — обычный дакрон (толстые стропы) и микролайн (или спектра) — тонкие стропы (книга написана до начала применения вектрана — прим. пер.). Микролайн дороже дакрона, что повышает стоимость парашюта. Однако за счет того, что стропы из микролайна намного тоньше, они уменьшают сопротивление — это дает примерно 5-процентное улучшение характеристик по сравнению с куполами с обычными стропами. Микролайн очень прочен и, в отличие от дакрона, не растягивается при нагрузках. Это означает, что он сильнее передает удар при раскрытии. Со временем микролайн также неравномерно сжимается, что нарушает установки наклона купола. Некоторые считают, что его труднее укладывать в пучки, и что он не подходит для купольной акробатики.

Стропы

Дракон

Микролайн

ДостоинстваЛегче укладыватьМягкие открытияНизкое сопротивлениеМалый укладочный объем
НедостаткиМного местаБольшое сопротивлениеДорожеЖестче открытия

 

Другие модификации

Большинство парашютного оборудования приходит в достаточно стандартной конфигурации. Однако есть ряд небольших модицикаций свободных концов и купола, которые могут улучшить летные характеристики. Не все они подходят любому парашютисту, но индивидуальная «заточка» оборудования может принести до 15 процентов улучшения характеристик. Модификации существуют двух видов — одни уменьшают сопротивление, другие улучшают управление.

Уменьшение паразитного сопротивления дает очевидные результаты в виде увеличения скорости (и связанного с этим увеличения подъемной силы) без увеличения веса системы. Самые распространенные способы уменьшить сопротивление — съемные или коллапсируемые слайдеры, коллапсируемые вытяжные парашюты, и изменения в конструкции свободных концов. Все эти простые модификации можно заказать у дилера или сделать при помощи опытного риггера. Но поскольку их безопасное использование требует некоторых знаний и навыков, сначала обязательно посоветуйтесь с людьми, которые знакомы с этими модификациями.

Слайдер

Слайдер необходим на раскрытии — но как только купол открылся, в нем уже нет нужды. Начиная с этого момента он — обуза. Если вы думаете, что его сопротивлением можно пренебречь, высуньте раскрытый слайдер из окна автомобиля на скорости 25 миль в час. Другой положительный момент — если вы уберет слайдер, купол сможет больше расправиться (уменьшится его искривление и он будет лететь более «плоско»). Избавившись от слайдера, вы не только улучшите летные характеристики — есть еще и эстетическая сторона: вы убираете источник шума и значительно увеличиваете обзор.

Есть несколько способов того как поступить со слайдером. У каждого способа есть свои плюсы и минусы. Главный минус любого способа — то, что после открытия со слайдером придется повозиться. Помните, что коллапсирование слайдера куда менее важно, чем контроль за полетом — относительно других парашютистов и дропзоны. Так что не начинайте возиться со слайдером, пока вы не выбрали безопасный путь к площадке приземления.

Самый распространенный способ избавиться от слайдера — протащить его вниз и либо прижать под подбородком, либо закрепить за затылком при помощи липучки, пришитой к воротнику комбинезона. Плюс этого способа — он очень прост, он практически не увеличивает время укладки, и с ним просто невозможно облажаться на укладке. Однако если у вас толстые свободные концы, ничего не получится. Если вы засунете слайдер под подбородок, он может выскользнуть и закрыть вам обзор. Если вы закрепили слайдер за затылком, а ваш купол спутался с другим куполом или случился отказ — при отцепке купол может остаться с вами! И то, и другое случалось — с ужасными последствиями. Кроме того, если у вас на свободных концах стоят недостаточно большие ограничители (бамперы), не стоит пытаться облегчить стаскивание слайдера за счет установки слишком больших люверсов — иначе у вас будет захватывающий отказ!

Достаточно распространен способ оставлять слайдер на месте, но коллапсировать его шнурком. На самом деле, таким образом вы добиваетесь только уменьшения шума и легкого уменьшения сопротивления. Хотя это и самое простое из всех возможных решений, оно же и самое малоэффективное. Сладер из двух частей — достаточно распространенная вещь на куполах для точности, потому что позволяет куполу максимально расправиться. Этот способ хорошо работает с широкими свободными и он достаточно прост. Он хорош для медленных куполов, потому что сопротивление от двух частей «разделенного» слайдера не имеет большого значения для точностных куполов — они и так имеют большое сопротивление. С эстетической точки зрения разделяемые слайдеры выглядят достаточно гадко.

Крайний вариант — вообще снять слайдер. Съемные слайдеры используют петлю и шпильку (на манер маленькой петли на клевантах), которые прикрепляют люверс к ткани. Чтобы снять слайдер, нужно дернуть за петлю в середине слайдера (где сходятся шнуры от четырех углов). Одно движение — и ткань у вас в руках. Теперь вам надо спрятать слайдер в комбинезон или куда-то еще, где вы его не потеряете. Люверсы слайдера остаются на свободных концах. Перед укладкой слайдер придется приделывать обратно — это увеличивает время укладки на минуту-другую. Поскольку вам совершенно не нужно, чтобы вы по ошибке прикрепили его неправильно, очень важно быть внимательным при постановке слайдера на место.

Коллапсируемые вытяжные парашюты

Коллапсируемый вытяжной — еще один легкий способ модификафии парашюта. Их существует два типа. Коллапсируемые на резинке (ungee-cord) хороши своей простотой — их, в отличие от варианта на шнуре (kill-line) не надо расколлапсировать. Недостаток первого типа состоит в том, что при изношенной резинке или при раскрытии на низкой скорости медуза может не наполниться и это приведет к скоростному отказу («вытяжной на буксире»). С медузой на шнуре все наоборот — этот тип прекрасно работает практически при любом варианте раскрытия. Но если забыть его расколлапсировать — вы получаете точно такой-же отказ. Если вы понимаете устройство своего коллапсированного вытяжного парашюта и следите за его состоянием, проблем у вас не будет.

В обоих типах используется более толстая и жесткая стреньга, чем на неколлапсируемых вытяжных. Это увеличивает вероятность того, что при запихивании медузы в карман стреньга завяжется в узел. Я несколько раз видел подобные случаи, и как мне кажется, они чаще происходят с коллапсируемым вытяжными — так что будьте внимательны к технике своей укладки.

Свободные концы

Управление при помощи передних свободных концов серьезно увеличивает возможности пилотирования. Однако стандартные свободные концы может быть трудно удержать в руках. Более того, во время поворота центробежная сила увеличивает вес и вместе с ним — нагрузку на свободные концы. Таким образом, большинство продвинутых пилотов предпочитают, чтобы к передним концам были приделаны некие «ручки». Обычно это либо петли, либо «узелки» («блоки»).

Петли — это петли. «Узелки» — это некий дополнительный материал или металлическое кольцо, пришитые ниже того места, где ваша рука держит свободный конец.«Узелок» не дает свободному концу проскользнуть через вашу руку, когда вы прилагаете к нему усилие. Преимущество петель в том, что они не выпирают и не могут зацепиться за что-нибудь при раскрытии. Однако, нужно приноровиться вставлять в них (и вытаскивать) ладони. «Узелки» проще — вы просто хватаете за свободный конец. Раскройте ладонь — и вы отпустите свободный. Вот почему купольщики и многие продвинутые пилоты используют «узелки».

Некоторые пилоты малых куполов с большим удлинением используют три пары свободных концов вместо двух. Третья пара используется для строп управления. Эта модицикация, как и съемный слайдер, позволяет куполу расправляться, улучшая его форму и, соответственно, летные характеристики. То, что третья пара свободных концов встречается редко, говорит о том, что в этом случае улучшение летных качеств не всегда стоит усложнения системы. И еще одна модификация — «замки», которые позволяют пилоту механически зафиксировать передние свободные концы под определенным натяжением. Замки часто использовались купольщиками в начале и середине 80-х. Они делают свободный конец толще, а используются чрезвычайно редко.

Источник skysport.ru. Перевод Кирилл Брюшков, Петр Лизяев, Федор Мозговой.

Пилотирование парашютов типа «Крыло»

aviatus.ru

Metodichka_po_parashyutam - Стр 4

Иногда при укладке купольных систем петли управ­ления выводятся на плечевые обхваты. Это должно предусматриваться конструкцией ранца, то есть петли управления должны как-то крепиться к плечевым обхватам, например на текстильной застежке — «ли­пучке». Такая доработка позволяет куполыцику, бросившему в поток вытяжной парашют, сразу же взять в руки петли управления и, при необходимости, скор­ректировать направление движения купола уже в про­цессе его раскрытия.

КЛАССИФИКАЦИЯ «КРЫЛЬЕВ» ПО ФОРМЕ КУПОЛА

Прямоугольные купола. Первые образцы парашютов типа «крыло» были строго прямоугольной формы. Ныне прямоугольную форму имеют классические (точ­ностные) купола, все запаски-«крылья», парашюты для купольной акробатики, студенческие и некоторые переходные.

Прямоугольные купола с небольшим удлинением (классические и переходные, а также запаски) отли­чаются устойчивостью, стабильностью раскрытия и простотой управления. Прямоугольные скоростные купола (удлинение 2,2) относительно просты в управ­лении, устойчивы и предсказуемы. Из-за небольшого удлинения у них достаточно «жесткий» и стабильный профиль, но не очень высокие показатели значения аэродинамического качества.

Девятисекционные прямоугольные купола имеют большее удлинение (2,5), меньшую высоту профиля и благодаря этому лучшее аэродинамическое качество и меньшую устойчивость (купол медленнее выходит из спирали, в некоторых режимах купол «дышит» — со­вершает небольшие колебания за счет уменьшенной же­сткости). Прямоугольные девятисекционники большой площади из ткани со слабой воздухопроницаемостью типа F-111 используются на студенческих и системах специального назначения; площади выше средней (150—190 кв. футов) и из ткани с нулевой воздухопро­ницаемостью типа ZP-0 — на переходных системах.

Купола со слабой эллипсностью незначи?ельно отли­чаются от прямоугольных — крайние нервюры короче центральной на единицы процентов, передняя, задняя или обе кромки закруглены. Форма изменена, чтобы не­много улучшить аэродинамику, при этом не усложняя управления. Обычно такие купола используются в каче­стве переходных. Примером является PD Spectre.

Полуэллиптические (с одной, как правило задней эллиптической кромкой) — переходный вариант от пря­моугольных к эллиптическим. Обычно у них закруглена задняя кромка. Отдельные образцы (Safire) данной формы имеют эллипсность большую, чем у некоторых эллиптических куполов, По сравнению с прямоуголь­ными куполами обладают заметно более высокими аэродинамическими характеристиками и, меньшей устойчивостью. Могут служить для постепенного пе­рехода парашютиста от прямоугольника к эллипсу.

Эллиптические купола самые строгие и требовательные к квалификации пилота. Например, если с помощью стропы управления ввести купол в разворот, то после отпускания обеих строп управления прямоугольный купол сам выходит на прямое планирование, а эллипти­ческий продолжает крутить спираль, и его необходимо выравнивать вручную. Кроме того, эллипсы, по сравне­нию с другими типами куполов, теряют больше всего высоты в развороте — при выполнении спирали, так называемом «скручивании» (вертикальная скорость может превышать 30 м/с). Достоинство эллипсов — их «летучесть», благодаря меньшему индуктивному сопро­тивлению данной формы они имеют наилучшее аэро­динамическое качество. Это означает, что при прочих равных параметрах (площадь, удлинение, толщина про­филя и загрузка парашюта, характеристики его ткани, погодные условия) эллиптический парашют планирует более полого, чем прямоугольный. При этом эллипсы, как правило, делают с большим удлинением купола (2,7), что улучшает показатели аэродинамического ка­чества, но отрицательно сказывается на стабильности раскрытия и устойчивости. Эллиптические купола обычно используются при увеличенной загрузке.

Всем скоростным куполам при большой загрузке свойственны повышенная вертикальная и горизонталь­ная скорости, короткий рабочий ход строп управления, большая потеря высоты при развороте.

Эллиптические купола используют достаточно опыт­ные парашютисты. Обычно, чтобы приступить к прыж­кам с эллиптическими куполами, парашютисту нужно предварительно совершить не менее 500 прыжков с па­рашютом типа «крыло».

Наиболее совершенны купола с косыми нервюрами. В каждой секции такого купола есть две косые (диаго­нальные) нервюры, соединяющие по диагонали ниж­нюю часть силовой нервюры с верхней частью проме­жуточной, поэтому купол лучше держит заданный профиль, имея при этом уменьшенную высоту профи­ля, что благоприятно сказывается на аэродинамичес­ком качестве. Кроме того, обычно значительная часть площади сопел куполов с косыми нервюрами закрыта тканью, что обеспечивает лучшее обтекание, незакры­тых отверстий более чем достаточно для наполнения воздухом объема между оболочками. Использование косых нервюр позволяет достичь максимально высоких аэродинамических характеристик, совершать прыжки с большой загрузкой.

УПРАВЛЕНИЕ ПАРАШЮТОМ

ОБЩИЕ ПРИНЦИПЫ

Любым парашютом можно управлять. Даже на нейт­ральном куполе можно совершать скольжение в любую сторону. Чаще всего парашют имеет четыре свободных конца. Для скольжения в определенном направлении (например, влево) достаточно вытянуть две соответ­ствующие (в нашем случае — обе левые) лямки, пере­кашивая таким образом купол. В результате перекоса часть воздуха из-под купола выходит с той стороны, где кромка оболочки выше, — возникает реактивная сила, заставляющая парашют перемещаться горизон­тально (рис. 30). На некоторых парашютах стропы делятся всего на две группы, например у запасного па­рашюта 3-5 имеется две лямки промежуточной под­весной системы — левая и правая. Чтобы на данном парашюте выполнить скольжение вперед или назад, нужно тянуть непосредственно за стропы с той сторо­ны, куда мы хотели бы перемещаться. Следует отме­тить, что при перекосе купола уменьшается его мидель и соответственно растет вертикальная скорость, из-за чего не стоит производить скольжение при приземле­нии.

Некоторые нейтральные купола имеют конструк­тивные щели и стропы управления, позволяющие разворачивать купол. Но даже если таких приспособ-

Рис. 30. Схема управления куполом с помощью его перекоса. Тонкими стрелками показано направление выхода воздуха из-под купола, толстой — направление движения парашюта

лений нет (например., на Д-1-5 или 3-5), можно разво­рачивать свое тело относительно купола. Для разворота влево необходимо взять правой рукой левую переднюю лямку, а левой — правую заднюю и потянуть. Купол при этом разворачиваться не должен. Такой прием при­меняется при приземлении на неуправляемых куполах, чтобы лететь лицом вперед. На любом управляемом куполе разворот в подвесной системе можно исполь­зовать, например, чтобы длительное время смотреть назад, не выворачивая шею.

УПРАВЛЕНИЕ КРУГЛЫМИ УПРАВЛЯЕМЫМИ ПАРАШЮТАМИ

Раньше, когда еще не были придуманы «крылья», спортивные парашюты имели круглые купола. Для придания куполу собственной горизонтальной скоро-

сти в нем делали конструктивные вырезы или щели. Например, у купола парашюта Д-1-5У в задней части три треугольных выреза. Воздух, выходящий через эти вырезы, создает реактивную силу, толкающую купол вперед. Самый совершенный из круглых спортивных парашютов УТ-15 имеет около пятидесяти вырезов и щелей, часть из которых предназначена для смягче­ния раскрытия, остальные — для придания парашюту горизонтальной скорости и возможности разворота ку­пола.

Для разворотов и изменения скорости служат стро­пы управления. Одним концом они пришиваются к куполу или основным стропам. Второй конец стро­пы управления продевается через кольцо на свободном конце подвесной системы и заканчивается бобышкой либо мягкой петлей. При втягивании парашютистом строп управления купол определенным образом пере­кашивается либо на нем открываются щели (клапана). Это приводит к развороту купола или — при втягива­нии одновременно обеих строп — к изменению скоро­сти его движения.

Кроме строп управления, для маневров можно пользоваться свободными концами. Например, при втягивании одного переднего свободного конца пара­шюта Д-1-5У будет происходить разворот купола в сто­рону этого свободного конца. Таким образом, на этом, достаточно древнем, куполе можно получить допол­нительные возможности управления, кроме обычного втягивания строп управления. Например, для разво­рота с одновременным увеличением горизонтальной скорости — «разворота со скольжением» — тянем обе передние лямки, причем одну из них втягиваем сильнее. То же с задними лямками — «разворот с торможени­ем». При работе на точность приземления использу­ются именно эти приемы. В свое время парашютисты показывали на Д-1-5У неплохие результаты по точнос­ти приземления.

Для быстрой потери высоты под круглым куполом парашютисты обычно сильно втягивают одну стропу, уменьшая таким образом мидель. На парашюте УТ-15 с той же целью можно втягивать центральную стропу.

Круглые парашюты не приспособлены для дина­мического торможения вертикальной скорости («по­душки»), как «крылья» (этот эффект описан ниже). Поэтому всякие попытки сделать «подушку» на одно-оболочковом куполе бесполезны. Более того, они мо­гут привести к раскачиванию купола, уменьшению его миделя и, следовательно, к увеличению вертикальной скорости. Кто-то может утверждать, что видел, как парашютист на «Дубе» при приземлении втянул стро­пы управления и, погасив вертикаль, очень мягко кос­нулся земли. Снижение вертикали действительно могло иметь мейто, но это объясняется тем, что пара­шютист попал в восходящий термический поток или приземлился в благоприятной фазе раскачивания ку­пола.

УПРАВЛЕНИЕ ПАРАШЮТОМ ТИПА «КРЫЛО»

Особенности управления «крылом»

Для управления «крылом» используются стропы управления и две пары свободных концов. Кроме того, парашют-«крыло» чувствителен к перекосу подвесной системы. Если парашютист переносит вес на один из ножных обхватов, купол начинает доворачиваться в соответствующую сторону. Такое действие равно­сильно втягиванию двух свободных концов слева или справа. Чем больше загружен купол, тем он более чув­ствителен к перекосу подвесной системы.

Режимы управления

В отличие от круглых парашютов планирующие ку­пола («крылья») имеют гораздо больше режимов поле­та (перечислены в порядке убывания горизонтальной скорости):

• разгон купола передними свободными концами;

• верхний (полный, номинальный) режим;

• режим выше среднего;

• средний режим;

• режим ниже среднего;

• нижний (нулевой) режим — парашютирование;

• режим «свал».

Рассмотрим особенности этих режимов подробнее (рис. 31).

Разгон купола передними свободными концами (рис. 31, а). Выполняется путем втягивания обоих пе­редних свободных концов (тем самым увеличивается перепад купола). Часто специально для этого на пере­дних лямках имеются петли. В данном режиме гори­зонтальная скорость парашюта выше номинальной, пертикаль также увеличена. Причем вертикаль увели­чивается сильнее горизонтали, то есть купол снижает­ся по более крутой траектории. Разгон купола часто используется, чтобы дойти до площадки приземления против ветра, сдувающего парашютиста на препятствия. Во-первых, увеличивая горизонтальную скорость, мы сильнее противодействуем скорости встречного иетра, во-вторых, увеличивая скорость снижения, уменьшаем время нахождения в воздухе и соответ-< i пенно время нежелательного воздействия встречно-||| ветра. Разгон увеличивает суммарную скорость, й следовательно, запас кинетической энергии, что по-шоляет сделать более эффективную «подушку» или пролет (swoop). Угол планирования при разгоне мож-

Рис. 31. Режимы полета парашюта-«крыло». Численные значения скоростей в м/с приведены для классического купола и не являются точными данными, а лишь позволяют оценить отношение скоростей в разных режимах. Пунктирными линиями обозначены уровни пе­редней и задней кромки купола в номинальном режиме (когда пара--шютист не выполняет никаких управляющих действий)

но регулировать, он зависит от того, насколько сильно втянуты передние лямки.

Верхний (полный, номинальный) режим (рис. 31, б). Стропы управления полностью отданы (ими не управ­ляют) и при правильной регулировке не воздействуют на заднюю кромку купола. Парашют имеет полную

поминальную горизонтальную скорость. Этот режим является основным режимом планирования для ско­ростных куполов.

Режим выше среднего (рис. 31, в). Горизонтальная скорость купола составляет 60—80% от номинальной. Стропы управления находятся в промежуточном по­ложении между средним и верхним режимами. В дан-пом режиме купол имеет минимальную вертикальную скорость и снижается по самой пологой траектории (то есть имеет максимальное аэродинамическое ка­чество). Следовательно, в этом режиме парашютист дольше находится в воздухе, что можно использовать при необходимости долететь до далекой площадки в штиль или при попутном ветре. Конкретная величи­на втягивания строп управления зависит от модели купола, загрузки и определяется экспериментальным путем. Еще больший эффект дает тот же режим при управлении задними лямками. При их небольшом втя­гивании профиль купола искажается меньше, чем при работе клевантами, имеет меньшее сопротивление и большее качество.

Средний режим (рис. 31, г). Стропы управления втя­нуты в среднее положение между верхним (полным) и нижним (нулевым) режимами. Руки должны нахо­диться в районе груди. Это не относится к очень малень­ким куполам. Парашют перемещается горизонтально со скоростью, равной половине полной номинальной. Вер­тикальная скорость близка к таковой в полном режиме (для большинства парашютов — 5 м/с). Этот режим яв­ляется основным при работе на точность приземления. Особенность режима в том, что парашютист имеет оди­наковые возможности для увеличения и уменьшения скорости, за счет чего можно корректировать ошибку шхода на цель, компенсировать изменение силы ветра и его порывы. Кроме того, пологие развороты из среднего режима происходят без потери высоты и без силь­ных кренов, усложняющих обработку цели. Выполне­ние «подушки» из среднего режима малоэффективно из-за небольшого запаса скорости.

Режим ниже среднего (рис. 31, д). Стропы управле­ния находятся в промежуточном положении между средним и нижним режимами. Горизонтальная ско­рость ниже средней, из-за этого подъемная сила купола невелика и скорость снижения увеличивается. Давление воздуха между оболочками купола понижено. Скорос­тные купола в этом режиме становятся неустойчивы­ми. Данный режим может использоваться только на классических куполах для устранения небольшого пе­рехода. Для выполнения «подушки» из режима ниже среднего запас скорости слишком мал.

Нижний (нулевой) режим — парашютирование (рис. 31, е). Стропы управления сильно втянуты (на большинстве парашютов — руки около бедер). Задняя кромка парашюта втянута до уровня передней, то есть перепад устранен. Ничто не заставляет парашют дви­гаться поступательно вперед или назад. Парашют сни- 1 жается вертикально (нейтрально). Давление между оболочками пропадает." В данной ситуации купол ра­ботает по тем же принципам, что и обычный круглый нейтральный купол, правда, имеет не очень подходя­щую для таких условий форму (не полусферическую, а цилиндрическую) и относительно небольшую пло­щадь. Из-за отсутствия горизонтального поступатель­ного движения аэродинамика «крыла» не работает, подъемной силы нет, вертикальная скорость высока. На практике ввод купола в данный режим необходим только при первых прыжках на новом для спортсмена куполе, чтобы он мог определить положение клевант в данном режиме, то есть рабочий диапазон строп уп-

равления и положение среднего режима. Ввод купола в парашютирование на малых высотах опасен.

Режим «свал» (рис. 31,ж). Стропы управления втянуты еще сильнее, чем в нижнем режиме. Задняя кромка купола опущена ниже передней, возникает отрица­тельный перепад, и купол начинает скользить назад. Воздух из купола выходит, оболочки слипаются. Вер­тикальная скорость слишком высока для безопасного приземления, горизонтальная — сильно варьируется для разных куполов и направлена назад. Классические купола в режиме «свала» сохраняют свою прямоуголь­ную форму, но колеблются, как флаг на ветру; если одна из клевант втянута сильнее, возникает вращение, называемое «негативной спиралью». Скоростные ку­пола с большим удлинением в данном режиме свора­чиваются.

Практическое применение «свала» — только для определения нулевого режима. Когда спортсмен мед­ленно опускает клеванты, при пересечении нулевого режима купол делает хорошо выраженное движение назад, почувствовав которое парашютист может слег­ка отдать стропы управления, и считать это их положе­ние нулевым режимом. Если резко отдать клеванты после режима «свала» (или близкого к нему), купол ныряет вперед, разгоняется и выходит в режим, опре­деляемый положением клевант. Если при этом купол имеет жесткую медузу (например, студенческая система или ПО-16), то при таком положении может произойти захват медузой передней кромки купола с последующей отцепкой, так что лучше действовать клевантами плавнее. Поведение сильно загруженных скоростных куполов при подобных действиях непред­сказуемо, и во избежание проблем лучше воздержаться от экспериментов. Вблизи земли входить в режим «свал» опасно для парашюта любого размера.

Развороты, скручивание

Изменять курс планирования парашюта-«крыло» можно, с помощью строп управления и свободных концов.

Проще всего изменить курс планирования под ку­полом с помощью строп управления. При втягивании одной из них соответствующая сторона задней кромки паращюта загибается вниз, что вызывает торможение и разворот купола в эту сторону.

При втягивании группы строп с одной из сторон купола происходит смещение веса парашютиста в эту сторону, в результате купол накреняется и начинает поворачивать в ту же сторону. Таким образом можно разворачивать купол, натягивая один свободный ко­нец либо два свободных конца с одной стороны. При втягивании заднего свободного конца действует еще и тот фактор, что притягиваемая сторона купола при­обретает больший угол атаки, вызывая торможение, аналогично стропе управления. Управление задними лямками в принципе аналогично действиям со стро­пами управления, из-за чего обрыв строп управления далеко не всегда приводит к отцепке. Различие в том, что диапазон управления (рабочий ход) у задних лямок намного меньше, а прилагаемое усилие заметно боль­ше. Это вызвано тем, что стропы управления воздей­ствуют лишь на часть задней кромки (практически — углы купола), а свободные концы — на достаточно большую площадь, примерно в четверть купола. Стро­пы управления главным образом тормозят горизон­тальную скорость, а задние лямки — увеличивают угол атаки, а следовательно, подъемную силу.

Угол атаки — угол между какой-либо условной лини­ей (например, продольной осью летательного аппарата или хордой крыла) и направлением скорости полета.

Крыло, имеющее ненулевой угол атаки, отклоняет на­бегающий поток воздуха. Чем больше угол атаки, тем выше сопротивление воздуха и подъемная сила. В об­щем случае при увеличении угла атаки скорость начи­нает падать, а угол тангажа — расти. При некотором критическом (достаточно большом) значении угла ата­ки сопротивление потока настолько вырастает, что ле­тательный аппарат теряет устойчивость и управление. Для каждого крыла существует оптимальное значение угла атаки, при котором подъемная сила достаточно высокая, а сопротивление достаточно низкое.

Угол тангажа—угол между продольной осью летатель-^ ного аппарата и горизонтальной плоскостью. У горизон­тально летящего самолета тангаж нулевой. У парашюта, который двигается за счет силы тяжести, тангаж почти всегда отрицательный (вектор скорости направлен ниже горизонта), а нулевых или положительных значений можно достичь кратковременно при выполнений ди­намического торможения (так называемой «подушки»).

При выполнении разворота стропой управления из режима полной скорости купол делает заметный крен в сторону разворота и входит в размазанную спираль. Скоростной купол при резком управлении в данном случае ныряет в сторону и вниз, на некоторое время оказывается ниже парашютиста, затем начинает вра­щать пилота вокруг себя. При этом парашют обращен передней кромкой к земле и снижается с большой ско­ростью. Такой прием, называемый «скручиванием», часто используется для быстрой потери излишней вы­соты, например для соблюдения заданной очереднос­ти приземления группы парашютистов. Еще большей потери высоты можно добиться разворотом на пере­дних свободных концах, причем такие развороты — более плавные и контролируемые. Кроме скручивания, такие развороты используются пилотами высокоско-

ростных парашютов при скоростных заходах на при­земление для максимального разгона купола и выпол­нения длинного пролета вблизи поверхности земли (swoop).

При работе на точность приземления обычно ис­пользуются развороты из среднего режима. Такие раз­вороты выполняются путем еще большего втягивания одной стропы управления и одновременного отпуска­ния второй с последующим возвратом обеих в средний режим. Такой разворот происходит достаточно быст­ро, но при этом крен купола незначителен, что благо­приятно для ориентации спортсмена в пространстве и не вызывает потери высоты.

«Подушка»

Можно наблюдать, как спортсмены-парашютисты на «крыльях» снижаются с некоторой (иногда доста­точно высокой) вертикальной и горизонтальной скоростью, затем, перед самым приземлением, как бы притормаживают парашют и мягко встают на землю. Способность парашюта типа «крыло» совершать такой маневр на парашютном сленге называют «подушкой». Кто-то объясняет такое название тем, что купол тор­мозится высоким давлением воздуха между нижней оболочкой купола и поверхностью земли, то есть бла­годаря проявлению экранного эффекта. На самом деле данный эффект здесь не работает — слишком велико отношение расстояния от земли до купола к площади купола. «Подушка» является кратковременным изме­нением траектории планирования парашюта на более пологую за счет запаса скорости. В простейшем случае данный маневр выполняется путем втягивания обеих строп управления парашюта, планирующего с полной скоростью. При этом отклоняющаяся вниз задняя

кромка парашюта играет роль закрылков, купол увеличивает свою подъемную силу, но одновременно приобретает большее сопротивление. Траектория ста­новится более пологой, суммарная скорость снижает­ся. При грамотном управлении куполом парашютисту удается снизить суммарную скорость полета до нуле­вой в момент, когда ноги готовы коснуться земли. Так как «подушка» выполняется за счет запаса скорости, эффективно выполнить ее, не имея этого запаса (на­пример, из среднего режима), не удастся.

На рис.,32 показаны варианты траекторий посадки классического купола.

Траектория А — снижение в полноскоростном ре­жиме (стропы управления полностью отданы), вбли­зи земли (высота 2—3 м) стропы управления плавно втягиваются, купол кратковременно замирает, суммар­ная скорость нулевая (точка <5"А). Пунктиром показаны

Рис. 32. Возможные траектории приземления точностного парашута

возможные дальнейшие траектории, если предполо­жить, что «подушка» выполняется на высоте. Г — пос­ле остановки купола стропы управления полностью отдаются, купол делает «клевок» вперед, кратко­временно идет снижение с увеличенной вертикальной скоростью, затем происходит выход на обычное пла­нирование. Д — купол удерживается в нулевом режиме, происходит парашютирование, вертикальная скорость высокая. Е — стропы управления вытянуты ниже ну­левого режима, купол сваливается назад, вертикальная скорость высокая. Все эти случаи сопряжены с уве­личенной скоростью снижения, поэтому выполнять «подушку» выше, чем следует (например, в 10—15 м от земли), опасно. Вернемся к вариантам нормального приземления. Траектория Б — разгон парашюта с по­мощью передних лямок. Снижение происходит по кру­той траектории с увеличенной скоростью, за счет чего «подушка» выполняется более эффективно, возможен даже небольшой пролет вдоль земли. Траектория В --Щ работа на точность приземления, купол удерживается в среднем режиме до касания земли, действий для за­медления скорости не предпринимается. Приземление в среднем режиме без «подушки» более жесткое, по­этому выполняется при наличии специально подготов­ленных матов или вскопанного песчаного круга.

Теперь рассмотрим поведение скоростных куполов (рис. 33).

Траектория А — планирование с полной скоростью и вытягивание строп управления перед землей (высо­та 0,5—2 м, в зависимости от загрузки купола), б1 — точ­ка остановки.

Б — разгон парашюта на передних лямках. После плавного отпускания лямок парашют выходит в гори­зонтальный полет. Постепенно втягивая стропы управ­ления, можно регулировать дальнейшую траекторию.

Рис. 33. Возможные траектории приземления скоростного парашюта

В идеале (при грамотном управлении) парашют переме­щается горизонтально, постепенно замедляя скорость до нулевой. На парашютах высокого класса (эллипсы, косонервюрники) можно выполнять горизонтальный пролет длиной несколько десятков метров. По сравне­нию с вариантом А пролет вдоль земли длиннее, но конечная точка траектории теоретически должна ока­заться ближе к исходной, так как траектория А более ровная и планирование более эффективно с точки зре­ния потери энергии.

В — разгон парашюта на передних лямках с после­дующим интенсивным втягиванием строп управления. Как видно, траектория намного короче, что вызвано потерями энергии при резкой работе.

Г — снижение и приземление в среднем режиме. На парашютах с большой загрузкой не используется из-за большой вертикальной скорости.

Для всех вариантов поведение купола после оста­новки в точке S аналогично приведенной схеме для классических куполов (см. рис. 32) с той оговоркой, что происходит все заметно быстрее.

Все траектории показаны для штилевой погоды. Наличие ветра скажется на горизонтальном и верти­кальном масштабе схем относительно земли. В боль­шинстве случаев заход на приземление выполняется против ветра, поэтому с его усилением траектории пла­нирования становятся более вертикальными. Кроме того, чем сильнее ветер, тем быстрее купол реагирует на стропы управления. В сильный ветер «подушку» следует выполнять ближе к земле. В штиль реакция купола очень плохая, выполнение «подушки» надо на­чинать выше. Вследствие этого высокозагруженные ку­пола сажать в штиль без разгона не всегда безопасно.

studfiles.net

Работа и устройства парашютной системы

Рис. 2 Устройство парашютной системы

Наверх

− Ранец:            Размещается на спине, служит для размещения основного и запасного парашютов. Прикреплён к подвесной системе. − Подвесная система: Надевается на парашютиста, состоит из плечевых обхватов, грудной перемычки и ножных обхватов. − Основной парашют: Располагается в нижней части ранца, присоединяется к подвесной системе с помощью четырёх свободных концов и кольцевого замкового устройства ( КЗУ), находящегося на плечевых обхватах. − Парашют запасной (ПЗ): Располагается в верхней части ранца, присоединен к подвесной системе. − Вытяжной парашют (ВП): маленький вытяжной парашютик, предназначен для расчековки ранца и раскрытия парашюта. Находится в кармане, под ранцем или на ножном обхвате. − Втулка ВП или звено раскрытия ОП: Прикреплена к вершине ВП. Предназначена для ввода в действие вытяжного парашюта. − Кольцевое замковое устройство (КЗУ): система из трех колец, служит для крепления основного парашюта к подвесной системе. − Подушка отцепки основного парашюта: Красного цвета, располагается на подвесной системе справа, служит для открытия КЗУ и отцепки основного парашюта. − Кольцо запасного парашюта:           Металлическое кольцо или подушка яркого цвета, располагается на подвесной системе слева. Предназначено для открытия ПЗ. − Система Транзит: Расположена на свободном конце основного парашюта. Соединяет свободный конец со шпилькой запасного парашюта. После отцепки КЗУ принудительно вводит в действие ПЗ, используя площадь основного парашюта.Никогда не полагайтесь на транзит при отказе и отцепке основного парашюта! Всегда дёргайте кольцо ПЗ самостоятельно! − CYPRES: Прибор для автоматического ввода в действие ПЗ. Самостоятельно открывает ПЗ на высоте 225 м при скорости снижения свыше 13 м/с (для студенческих систем). − Клеванты строп управления: Расположены на задних свободных концах на основном и на запасном парашютах. − Высотомер: Надевается на запястье как часы или закрепляется на грудной перемычке. Служит для определения высоты.

Наверх

− Радио: Используется для связи инструктора со студентом для помощи при управлении парашютом.Никогда не надейтесь на радио. Будьте всегда готовы принимать самостоятельные решения! − Указатель направления ветра (колдун): Он же конус. Указатель направления ветра (тонким концом показывает, куда дует ветер). Указатель направления ветра ( колдун) установлен на площадке приземления. − Стрелка: Большая надувная стрелка яркого цвета в районе площадки приземления. Указывает направление приземления. Следует помнить, что указатель направления ветра (колдун) и стрелка направлены в противоположные стороны. Приземляться нужно по стрелке и навстречу указатель направления ветра (колдуну). − Комбинезон: спецодежда парашютиста. К рукавам и штанинам пришиты специальные захваты, для удобства работы группы парашютистов в воздухе. − Дополнительный груз: Он же балласт или просто "жилетка". Представляет собой жилетку с зашитыми внутрь грузами, как правило, свинцовой дробью. Служит для утяжеления легких парашютистов, что необходимо для обеспечения одинаковой скорости падения группы. − Шлем: Жесткий            пластиковый шлем, оберегает голову студента от нежелательных ударов. − Очки: Пластиковые мягкие очки. Служат для защиты глаз от плотного потока воздуха.

Наверх

−      Парашютист вытаскивает правой рукой и выбрасывает в поток «вытяжной парашют». − «Вытяжной парашют» подхватывается потоком и расчековывает ранец. − Клапаны ранца раскрываются, вытяжной парашют вытягивает из контейнера камеру основного парашюта, стропы выходят из резиновых сот, камера расчековывается, основной парашют выходит из камеры и начинает наполняться. −      Поток воздуха попадает в слайдер, слайдер удерживает купол от резкого раскрытия и постепенно сползает вниз по стропам − После полного раскрытия парашютист расчековывает стропы управления, осматривает парашют по схеме (НАПОЛНЕН, УСТОЙЧИВ, УПРАВЛЯЕМ) и начинает управляемое снижение.

Наверх

Парашют типа "крыло" представляет собой сшитые вместе два полотнища, разделенные вертикальными перегородками, нервюрами, на сопла. Пара сопел образует секцию. Купола бывают 7-ми, 9-ти и 11-ти секционные. Студенческие и большинство спортивных парашютов девятисекционные. 7-ми и 11-ти секционные купола имеют специальное назначение, их мы здесь рассматривать не будем. Каждая нервюра пришита к верхней и нижней оболочкам. Часть нервюр усилены и несут нагрузку. При наполнении воздухом сопла образуют полужесткое крыло с верхней и нижней поверхностями и аэродинамическим профилем. Стропы и нервюры сохраняют профиль купола в процессе полета парашюта. Крайнее правое и левое сопло имеют стабилизаторы, "уши". Купол имеет четыре ряда строп и стропы управления, прикреплённые к задней кромке (к хвосту). Все стропы разделены на четыре группы, каждая группа строп продета в одно из колец слайдера. Группы строп крепятся к свободным концам подвесной системы, которых также четыре.

Слайдер представляет собой прямоугольник из ткани с четырьмя кольцами по углам. Он служит для упорядочивания и торможения раскрытия. При раскрытии поток воздуха прижимает слайдер к нижней оболочке купола, в то же время воздух, попадая в сопла, начинает наполнение парашюта. Далее по мере наполнения купола поток воздуха ослабевает и слайдер сползает по стропам вниз. Таким образом, обеспечивается наиболее мягкое раскрытие без рывков и чрезмерных перегрузок. На концах строп управления находятся петли, клеванты. При укладке купола клеванты зачековывают на задних свободных концах. Там же они находятся после раскрытия парашюта. После расчековки строп управления, нельзя выпускать клеванты из рук. Парашют типа крыло, полностью оправдывая свое название, работает по тем же принципам, что и крылья самолета, т.е. использует набегающий поток воздуха для создания подъемной силы. Соответственно, подчиняется тем же законам аэродинамики, что и обычные крылья. Как же работает крыло, откуда берется подъемная сила? Профиль крыла образован двумя поверхностями: верхней и нижней. Верхняя поверхность более выгнута, нижняя – менее. При движении, крыло разрезает воздух, и поток, огибающий крыло сверху, проходит более длинный путь, чем нижний. Поэтому воздух, находящийся над крылом, становится более разрежённым, а воздух под крылом остается той же плотности. Возникает разница давлений, которая и толкает крыло вверх. Чем быстрее крыло двигается вперед, тем сильнее становится поток, увеличивается разница давлений и, соответственно, возрастает подъемная сила. В зависимости от того, как, под каким углом и с какой скоростью воздушный поток обтекает поверхность крыла, различают множество режимов работы крыла: планирование, парашютирование, свал и другие.Рис.4. Устройство парашюта типа крыло О режимах работы парашюта речь пойдет ниже, а сейчас стоит запомнить главное отличие купола типа крыло от обычного, круглого парашюта. Это значительная горизонтальная скорость. Если круглый парашют работает, грубо говоря, как парус и просто замедляет падение, то парашют типа крыло способен преодолевать довольно большие расстояния и дает широкую свободу маневра. Горизонтальной и вертикальной скоростью парашюта типа крыло можно управлять, натягивая или отпуская стропы управления. Чем сильнее натянуты стропы управления, тем медленнее парашют летит вперед. Вертикальная и горизонтальная скорости крыла обратно пропорциональны. Иными словами, чем медленнее крыло летит вперед, тем быстрее оно летит вниз и наоборот. Это основной принцип, который следует запомнить в первую очередь. Разумеется, все несколько сложнее, и в седьмом разделе книги мы еще раз затронем эту тему. Если натягивать только одну стропу управления, то парашют будет разворачиваться в соответствующую сторону. Чем сильнее натянута стропа, тем быстрее происходит разворот. Быстрый разворот означает также потерю горизонтальной скорости и, соответственно, потерю высоты. Не стоит энергично разворачивать купол низко над землей. Горизонтальная скорость всегда измеряется относительно воздуха, из-за того, что ветер изменяет горизонтальную скорость парашюта относительно земли. Чтобы лучше понять это, можно сравнить парашют с лодкой, плывущей в реке с сильным течением. Если плыть против течения, то скорость лодки относительно берега будет медленной, если плыть по течению, то быстрой. Также и парашют, летящий против ветра, будет двигаться относительно земли медленнее, чем парашют, летящий по ветру, хотя относительно воздуха их скорость будет одинакова. Чтобы внести ясность, о какой горизонтальной скорости идет речь, различают воздушную скорость и путевую. Воздушная - это скорость относительно воздуха, путевая - относительно земли. Свободно летящий купол студенческого парашюта развивает воздушную скорость 8-9,5 метров в секунду и скорость снижения около 2,5 метра в секунду. Таким образом, даже при полностью отпущенных стропах управления, если приземляться против ветра, скорость будет безопасной. При полностью натянутых стропах управления купол практически не летит вперед, и падает со скоростью 7 метров в секунду.

Наверх

Страхующий прибор (AAD Automatic Activation Device) - это устройство, единственной задачей которого является спасение жизни парашютиста. Приборы бывают разной конструкции и отличаются алгоритмом работы, но основной принцип у всех одинаков: принудительное открытие запасного парашюта на заданной высоте. Наиболее известны приборы CYPRES, ASTRA, VIGIL. Однако наиболее распространенным на сегодняшний день является CYPRES. Именно CYPRES используется в студенческих системах в нашем клубе, поэтому именно о нем и пойдет речь далее.

Наверх

"CYPRES" ("Сайпрес"), название прибора является аббревиатурой слов "Кибернетическая Система Раскрытия Парашюта" (Cybernetic Parachute Release System). Несмотря на кажущуюся простоту, прибор является сложным и полностью автономным электронным устройством. Существуют три версии прибора, "Студент", "Эксперт" и "Тандем", как нетрудно догадаться, для студентов, опытных парашютистов и тандемов соответственно. Они различаются только программой, алгоритмом работы и цветом кнопки включения: желтый, красный и синий соответственно. Обращаться с CYPRES очень просто - достаточно включить его один раз утром, прибор настроится и будет в течение всего дня работать самостоятельно. При включении прибор протестирует сам себя, измерит атмосферное давление и перейдет в режим нормальной работы. После этого о нем, в принципе, можно и забыть, хотя, разумеется, проверять его состояние визуально перед каждым прыжком не будет лишним, а для студентов такая проверка обязательна. Только превышение скорости 13 м/с (25 м/с для версии "Эксперт") на высоте ниже 225 метров приведет к тому, что CYPRES вступит в работу. В этой ситуации CYPRES раскроет запасной парашют приблизительно за 4,5 секунды до падения на землю.

Наверх

«CYPRES» состоит из самостоятельно тестирующегося микропроцессорного прибора, контрольной панели, при помощи которой производится управление, и пиропатрона.

Наверх

При включении прибор проходит процедуру самотестирования и измеряет атмосферное давление. Пока CYPRES включен, он постоянно следит за изменениями давления и, если это необходимо, автоматически вводит поправки в соответствии с изменением погоды. Очень тонкая регулировка помогает определению точной высоты работы прибора и активации пиропатрона в случае наступления соответствующих условий. Прибор содержит специально запрограммированный микропроцессор, который способен в режиме реального времени вычислять высоту и скорость снижения парашютиста на основании изменения атмосферного давления. Постоянно отслеживая эти данные, процессор формирует определенные значения, на основании которых автоматика принимает решения. Если определено, что парашютист находится в опасной ситуации (быстро снижается на малой высоте), то прибор подаст импульс в пиропатрон. Пиропатрон является полностью независимым от конструкции ранца, так как он не выдергивает шпильку запасного парашюта, а просто перерезает петлю зачековки отсека внутри ранца ПЗ с помощью резака, который приводится в действие пороховым зарядом. Система открытия CYPRES имеет следующие преимущества:

  • Ранец ПЗ может быть открыт двумя различными способами. Один способ используется парашютистом - выдергивание кольца ПЗ, второй способ - когда CYPRES перерезает петлю зачековки ПЗ.
  • Единственными механическими частями в приборе является болт-резак в пиропатроне и кнопка управления. Все остальные части прибора являются электронными.
  • Весь прибор находится внутри ранца ПЗ, что практически устраняет возможность механических повреждений и загрязнений.
Наверх

CYPRES работает от батареи, которая рассчитана на его работу в течение 2-х лет. После включения прибора, он производит самостоятельное тестирование, во время которого показывает цифры с 9999, быстро уменьшающиеся до 0. Этот отсчет прерывается примерно на три секунды в диапазоне от 6900 до 5700. Это и есть напряжение батареи. Например, если остановка произошла на 6300, то это значит, что действительное напряжение батареи равно 6,3 вольта. Если батарея неисправна или ее напряжение ниже необходимого, CYPRES определит это самостоятельно. Тогда, в конце проверки CYPRES остановится, покажет на дисплее код ошибки 8999 или 8998 и не перейдет в рабочий режим. Это показывает, что данная батарея не пригодна для дальнейшего использования.

Наверх

У версии CYPRES "Студент" кнопка включения контрольной панели желтого цвета с надписью "Student". Его пиропатрон срабатывает в случае, если скорость снижения превысит 13 м/с. Высота срабатывания различная. В случае скорости снижения равной скорости свободного падения, высота срабатывания приблизительно 225 м. Однако, если скорость снижения меньше скорости свободного падения, но все еще больше 13 м/с (такое может произойти при частично открытом куполе), тогда CYPRES "Студент" включит пиропатрон, когда высота снизится до 305 м. над уровнем земли. В этом случае у студента будет немного больше времени, чтобы приготовиться к приземлению. Если вы не прыгнули и снижаетесь в летательном аппарате, обязательно выключите    CYPRES          "Студент"! Берегите труд укладчиков. Помните, что можно превысить скорость 13 м/с. и под полностью наполненным куполом. Не стоит закладывать резкие виражи на высоте ниже 300 метров.

Наверх

Кнопка на контрольной панели должна нажиматься только пальцем. Во избежание повреждений кнопки, не используйте, пожалуйста, для нажатий острые предметы. Нажатие должно быть коротким и производиться в центр кнопки (похожее на "клик"). Кнопка контрольной панели является для пользователя единственным способом управления прибором. Используя ее можно выполнять следующие четыре операции: − Включение − Выключение − Увеличение высоты коррекции − Уменьшение высоты коррекции

Наверх

CYPRES, включается короткими нажатиями на кнопку четыре раза. Первым нажатием кнопки начинается процедура включения. Примерно через секунду загорится красная лампочка. Как только это произойдет, нужно немедленно нажать кнопку еще раз. Эту последовательность - немедленное нажатие кнопки после того, как загорелась красная лампочка - придется повторить еще два раза. После четвертого, общего по счету, нажатия Сайпрес переходит в рабочий режим. Если Вы не нажали кнопку сразу после того, как загорелась красная лампочка или сделали это слишком рано, CYPRES будет игнорировать дальнейшие попытки включения. Придется дождаться, когда он выключится и попробовать снова -  это очень легко, если удалось сделать хотя бы один раз. Такая процедура включения путем четырех нажатий была разработана для того, чтобы предотвратить случайное включение. После того как выполнена процедура включения, CYPRES переходит в режим самостоятельного тестирования. Сначала на дисплее появляется число 9999, которое затем начинает быстро уменьшаться до 0. Общее время тестирования занимает около 29 секунд и будет прервано три раза. Первая 3х секундная пауза будет сделана в интервале между числами 6900 и 5700. Число, которое будет на дисплее во время этой паузы, показывает напряжение батареи (например, 6300 значит, что напряжение составляет 6,3 вольта). Вторая и третья паузы произойдут на числах 5000 и 100. Эти остановки выполняются исключительно по техническим причинам и для пользователя ничего не значат. Во время самостоятельного тестирования CYPRES несколько раз замеряет атмосферное давление. Если прибор обнаружит, что результаты измерений сильно отличаются друг от друга, он решит, что возникла какая-то проблема и не перейдет в рабочий режим. В этом случае самостоятельное тестирование прерывается, и на дисплее появляется число 100. При возникновении любых функциональных неисправностей CYPRES также прерывает самостоятельное тестирование и в течение 2-х секунд показывает на дисплее номер, являющийся кодом ошибки, после чего выключается. После того, как самостоятельное тестирование завершено, или после того, как прибор был выключен вручную, он будет игнорировать любые попытки его включения или выключения в течение 1 секунды. После того, как CYPRES включен, он находится в рабочем состоянии в течение 14 часов. По истечении этого времени он самостоятельно выключается. Кроме того, Вы можете выключить его сами в любое время. Процедура выключения полностью идентична процедуре включения, производится четырьмя нажатиями кнопки, для предотвращения случайного выключения.

Наверх

make-ws.ru

Парашют разведчика Арбалет-2 | Во власти Неба

  • Facebook
  • Twitter
  • Google
  • RSS
  • Создать сайт на WordPress
Во власти Неба
  • Главная
    • О сайте
    • Об авторе
    • Карта сайта
    • Контакты
  • Парашютный спорт
    • На пьедестале Мира
      • Парашютный спорт. Сборная СССР 70-е годы
        • Прыжки из стратосферы с Ил-76
    • Классический парашютизм
    • Групповая акробатика. Владимир Останин
    • Видео. Групповая акробатика
    • Купольная акробатика
    • Эдем Эскендеров
    • Парашютисты 80-х
    • Рекордные работы в Фергане. 1988 г
    • В Небе профессионалы
    • Парашютисты ВДВ
      • Военизированное упражнение
  • ВДВ
    • Десантный парашют Д-10 и Д-10П
    • Парашют Д-12 «Листик»
    • Парашют Арбалет-2
    • Прыжки с Ил-76 и с парашютом Д-5 или Д-6
    • Прыжки с Ми-8
    • Служить в ВДВ
    • Служить в спецназе
    • 345 гвардейский ОПДП возрождается
      • 345 гвардейский ОПДП Абхазия
      • 345 полк Абхазия. Начало войны в Нижней Эшере
    • 309-й ЦСФП ВДВ
      • 309-й ЦСФП ВДВ. Характер ЦСПК
  • Парашютизм
    • Первый парашют Котельникова РК-1
    • Прыжок с парашютом: Прогулка в облаках
    • Парашютная акробатика. Крутим комплекс
    • Хочу прыгнуть с парашютом
      • Первый прыжок с парашютом
      • Первые самостоятельные прыжки
    • Отказ парашюта. Действия в воздухе
    • Как мы вынесли ковровую дорожку из Ан-2 на высоте 1500 м
    • Полет на парашюте. Буксировка
    • Этажерка — парашюты Ут-15 и крыло
    • Бейсджампинг — прыжки с парашютом с фиксированных объектов
  • Саморазвитие
    • Цель вижу... начинаю движение
    • Польза сосны. Восстановление организма
    • Природный лекарь
    • Размышления
      • Мои мысли...
      • Вчера лежал снег...
      • Маки... весна...

milaremina.ru

Классификация парашютов типа ”Крыло” »

ВведениеЛюбой современный парашют типа “крыло” имеет определенное назначение, которое зависит от его конструктивного исполнения. Применение парашюта не по назначению, а также с нарушением рекомендованного производителем диапазона загрузок может привести к неправильной работе или даже отказу всей парашютной системы. Это позволяет классифицировать все современные парашюты типа “крыло” на основании трех признаков – назначения, конструкции и загрузки.Специальные терминыПри классификации по конструктивному признаку используются термины, которые описывают геометрию купола:Размах (span) – это максимальный абсолютный размер купола между его концевыми нервюрами, замеренный по нижней поверхности и выраженный в футах (ft) или реже в м.Хорда (chord) – это теоретическая длина между передней носовой точкой профиля и точкой на задней кромке купола, замеренная параллельно нервюрам и выраженная в футах (ft) или реже в м.Сужение (chord root/tip) – это безразмерный параметр, определяемый как отношение центральной хорды купола к концевой (максимальной к минимальной).Площадь (size) – обычно это теоретическая площадь купола парашюта по его нижней поверхности без учета площади стабилизаторов, выраженная вкв. футах (sq.ft.) или реже в м2.Удлинение (aspect ratio) – это безразмерный параметр, определяемый как отношение квадрата размаха купола к его площади.Количество ячеек (number of cell) – это число замкнутых ячеек оболочки купола, образованных парами соседних силовых нервюр.Купол прямоугольной формы в плане – это купол с равными вдоль размаха хордами. Сужение купола равно единице, а удлинение выражается простым отношением размаха купола к его хорде.Купол эллиптической формы в плане – это купол с хордами, длина которых уменьшается к концам по близкому к эллипсу закону. Сужение купола всегда больше единицы.Диагональный парашют – купол с дополнительными промежуточными и силовыми диагональными нервюрами, уменьшающими деформации оболочки вдоль размаха.Тип воздухозаборника – условная принадлежность конструкции воздухо-заборника парашюта к одному из двух крайних решений: прямоугольный, максимально открытый или косой, максимально прикрытый.При классификации по признаку загрузки используются термины, которые описывают летные характеристики парашютной системы.Загрузка – это отношение суммарного веса (веса парашютиста, его одежды и всего его снаряжения) к площади парашюта, выраженная в фунтах на кв. фут (psf) или реже в кг/м2.Горизонтальная скорость – это горизонтальная составляющая скорости планирования парашюта относительно воздуха с отпущенными стропами управления при определенной загрузке и параметрах атмосферы (температуре и плотности), выраженная в м/с или реже в км/ч.Вертикальная скорость – это вертикальная составляющая скорости планирования парашюта относительно воздуха с отпущенными стропами управления, без совершения эволюций при определенной загрузке и параметрах атмосферы (температуре и плотности), выраженная в м/с.

Классификация парашютов типа ”крыло”

1. Парашюты общего назначения

1.1. Студенческие парашюты

– назначение: первоначальное обучение пилотированию парашютом типа “крыло” или использование в качестве основного купола парашютистами большого веса

– тип конструкции: 9-тиячеечные парашюты прямоугольной формы в плане или эллиптические с небольшим до 1.1 сужением, умеренным удлинением 2.5-2.6, прямоугольным открытым воздухозаборником, площадью в диапазоне 200-300 кв.футов, обычно выполнены из воздухопроницаемой ткани или в комбинации с воздухонепроницаемой

– группа загрузки: низко загруженные, рабочий диапазон загрузок в пределах 0.6-1.2 фунта/кв.фут, на рекомендуемых загрузках средняя горизонтальная скорость до 11 м/с, средняя вертикальная скорость до3.5 м/с

1.2. Переходные парашюты

– назначение: использование в качестве основного купола парашютистами среднего уровня подготовки или парашютистами начального уровня подготовки на низких загрузках

– тип конструкции: 7-ми или 9-тиячеечные парашюты эллиптической формы в плане, среднего сужения 1.1-1.2, с удлинением около 2.1-2.3 для 7-ми и 2.55-2.65 для 9-тиячеечной модели, прямоугольным открытым или слегка косым прикрытым воздухозаборником, площадью 100-230 кв.футов, обычно выполнены из воздухонепроницаемой ткани

– группа загрузки: средне и низко загруженные, рабочий диапазон загрузок в пределах 1.0-1.6 фунта/кв.фут для 7-ми и 1.0-1.75 фунта/кв.фут для 9-ти-ячеечной модели, на рекомендуемых загрузках средняя горизонтальная скорость до 15 м/с, средняя вертикальная скорость до 5.5 м/с

1.3. Скоростные парашюты

– назначение: использование в качестве основного купола парашютистами высокого уровня подготовки или парашютистами среднего уровня подготовки на невысоких загрузках

– тип конструкции: 9-тиячеечные парашюты эллиптической формы в плане с большим до 1.3-1.4 сужением, высоким порядка 2.6-2.75 удлинением, маленьким прямоугольным или маленьким косым воздухозаборником, площадью 90-170 кв.футов, выполнены из воздухонепроницаемой ткани

– группа загрузки: средне и высоко загруженные, рабочий диапазон загрузок в пределах 1.3-2.0 фунта/кв.фут, на рекомендуемых загрузках средняя горизонтальная скорость до 16 м/с, средняя вертикальная скорость до5.5 м/с, на высоких загрузках 1.8-2.0 фунта/кв.фут средняя горизонтальная скорость до 17 м/с, средняя вертикальная скорость до 6 м/с

1.4. Диагональные парашюты

– назначение: использование в качестве основного купола парашютистами высокого уровня подготовки

– тип конструкции: 7-ми или 9-тиячеечные диагональные парашюты эллиптической формы в плане, с большим до 1.3-1.4 сужением, высоким до 2.7-2.85 удлинением, маленьким косым воздухозаборником, площадью60-130 кв.футов, выполнены из воздухонепроницаемой ткани

– группа загрузки: высоко загруженные, рабочий диапазон загрузок находится в пределах 1.3-2.5 фунта/кв.фут, на часто используемых загрузках 2.1-2.3 фунта/кв.фут средняя горизонтальная скорость превышает 18 м/с, средняя вертикальная скорость более 6 м/с

2. Парашюты специального назначения

2.1. Парашюты для точности приземления

– назначение: выполнение прыжков на точность приземления

– тип конструкции: обычно 7-миячеечные парашюты прямоугольной формы в плане, маленького удлинения близкого к 1.75, с прямоугольным открытым воздухозаборником, иногда с дополнительными воздухозаборниками на нижней поверхности, площадью 220-300 кв.футов, обычно выполнены из воздухопроницаемой ткани

– группа загрузки: низко загруженные, рабочий диапазон загрузок в пределах 0.4-0.9 фунта/кв.фут, на рекомендуемых загрузках средняя горизонтальная скорость до 10 м/с, средняя вертикальная скорость до 5 м/с

2.2. Парашюты для купольной акробатики

– назначение: выполнение прыжков на купольную акробатику

– тип конструкции: обычно 7-миячеечные парашюты прямоугольной формы в плане, маленького удлинения в пределах 1.95-2.15, имеют прямоугольный открытый воздухозаборник с дополнительным усилением и стропы повышенной прочности, площадью 130-250 кв.футов, обычно выполнены из комбинации воздухонепроницаемой и воздухопроницаемой ткани

– группа загрузки: низко и средне загруженные, рабочий диапазон загрузок в пределах 0.9-1.6 фунта/кв.фут, на рекомендуемых загрузках средняя горизонтальная скорость до 13 м/с, средняя вертикальная скорость до 5 м/с

2.3. Запасные парашюты

– назначение: спасение жизни в аварийных ситуациях

– тип конструкции: 7-миячеечные парашюты прямоугольной формы в плане, маленького удлинения в пределах 2.0-2.1, с прямоугольным открытым воздухозаборником, оборудованы уменьшенным слайдером для максимально быстрого открытия, площадью 100-280 кв.футов, выполнены полностью из воздухопроницаемой ткани

– группа загрузки: средне загруженные, рабочий диапазон загрузок в пределах 1.0-2.0 фунта/кв.фут, на рекомендуемых загрузках средняя горизонтальная скорость до 15 м/с, средняя вертикальная скорость до5.5 м/с

2.4. Тандемные парашюты

– назначение: выполнение прыжков с пассажиром

– тип конструкции: 9-тиячеечные парашюты прямоугольной формы в плане или эллиптические умеренного сужения до 1.1-1.2, среднего удлинения в пределах 2.6-2.75, с прямоугольным открытым или косым прикрытым воздухозаборником, площадью 330-450 кв.футов, обычно выполнены из комбинации воздухонепроницаемой и воздухопроницаемой ткани или полностью из воздухонепроницаемой ткани

– группа загрузки: средне загруженные, рабочий диапазон загрузок в пределах 1.0-1.25 фунта/кв.фут, на рекомендуемых загрузках средняя горизонтальная скорость до 13.0 м/с, средняя вертикальная скоростьдо 3.5 м/с

VN:F [1.9.22_1171]

Rating: 8.4/10 (5 votes cast)

VN:F [1.9.22_1171]

Rating: +2 (from 2 votes)

Классификация парашютов типа ”Крыло”, 8.4 out of 10 based on 5 ratings

parachutist.com.ua

ПОСЛЕДОВАТЕЛЬНОСТЬ ОТКРЫТИЯ ОСНОВНОГО ПАРАШЮТА

- Парашютист вытаскивает правой рукой и выбрасывает в поток «вытяжной парашют».

- «Вытяжной парашют» подхватывается потоком и расчековывает ранец.

- Клапаны ранца раскрываются, вытяжной парашют вытягивает из контейнера камеру основного парашюта, стропы выходят из резиновых сот, камера расчековывается, основной парашют выходит из камеры и начинает наполняться.

- Поток воздуха попадает в слайдер, слайдер удерживает купол от резкого раскрытия и постепенно сползает вниз по стропам

- После полного раскрытия парашютист расчековывает стропы управления, осматривает парашют по схеме (НАПОЛНЕН, УСТОЙЧИВ, УПРАВЛЯЕМ) и начинает управляемое снижение.

КОНСТРУКЦИЯ И ОСНОВНЫЕ ПАРАМЕТРЫ ПАРАШЮТА ТИПА "КРЫЛО"

Парашют типа "крыло" представляет собой сшитые вместе два полотнища, разделенные вертикальными перегородками, нервюрами, на сопла. Пара сопел образует секцию. Купола бывают 7-ми, 9-ти и 11-ти секционные. Студенческие и большинство спортивных парашютов девятисекционные. 7-ми и 11-ти секционные купола имеют специальное назначение, их мы здесь рассматривать не будем.

Каждая нервюра пришита к верхней и нижней оболочкам. Часть нервюр усилены и несут нагрузку. При наполнении воздухом сопла образуют полужесткое крыло с верхней и нижней поверхностями и аэродинамическим профилем. Стропы и нервюры сохраняют профиль купола в процессе полета парашюта. Крайнее правое и левое сопло имеют стабилизаторы, "уши".

Купол имеет четыре ряда строп и стропы управления, прикреплённые к задней кромке (к хвосту). Все стропы разделены на четыре группы, каждая группа строп продета в одно из колец слайдера. Группы строп крепятся к свободным концам подвесной системы, которых также четыре.

Слайдер представляет собой прямоугольник из ткани с четырьмя кольцами по углам. Он служит для упорядочивания и торможения раскрытия. При раскрытии поток воздуха прижимает слайдер к нижней оболочке купола, в то же время воздух, попадая в сопла, начинает наполнение парашюта. Далее по мере наполнения купола поток воздуха ослабевает и слайдер сползает по стропам вниз. Таким образом, обеспечивается наиболее мягкое раскрытие без рывков и чрезмерных перегрузок.

На концах строп управления находятся петли, клеванты. При укладке купола клеванты зачековывают на задних свободных концах. Там же они находятся после раскрытия парашюта. После расчековки строп управления, нельзя выпускать клеванты из рук.

Парашют типа крыло, полностью оправдывая свое название, работает по тем же принципам, что и крылья самолета, т.е. использует набегающий поток воздуха для создания подъемной силы. Соответственно, подчиняется тем же законам аэродинамики, что и обычные крылья.

 

Как же работает крыло, откуда берется подъемная сила?

Профиль крыла образован двумя поверхностями: верхней и нижней. Верхняя поверхность более выгнута, нижняя – менее. При движении, крыло разрезает воздух, и поток, огибающий крыло сверху, проходит более длинный путь, чем нижний. Поэтому воздух, находящийся над крылом, становится более разрежённым, а воздух под крылом остается той же плотности. Возникает разница давлений, которая и толкает крыло вверх. Чем быстрее крыло двигается вперед, тем сильнее становится поток, увеличивается разница давлений и, соответственно, возрастает подъемная сила.

В зависимости от того, как, под каким углом и с какой скоростью воздушный поток обтекает поверхность крыла, различают множество режимов работы крыла: планирование, парашютирование, свал и другие.

Рис.4. Устройство парашюта типа крыло

О режимах работы парашюта речь пойдет ниже, а сейчас стоит запомнить главное отличие купола типа крыло от обычного, круглого парашюта. Это значительная горизонтальная скорость. Если круглый парашют работает, грубо говоря, как парус и просто замедляет падение, то парашют типа крыло способен преодолевать довольно большие расстояния и дает широкую свободу маневра.

Горизонтальной и вертикальной скоростью парашюта типа крыло можно управлять, натягивая или отпуская стропы управления. Чем сильнее натянуты стропы управления, тем медленнее парашют летит вперед. Вертикальная и горизонтальная скорости крыла обратно пропорциональны. Иными словами, чем медленнее крыло летит вперед, тем быстрее оно летит вниз и наоборот. Это основной принцип, который следует запомнить в первую очередь. Разумеется, все несколько сложнее, и в седьмом разделе книги мы еще раз затронем эту тему.

Если натягивать только одну стропу управления, то парашют будет разворачиваться в соответствующую сторону. Чем сильнее натянута стропа, тем быстрее происходит разворот. Быстрый разворот означает также потерю горизонтальной скорости и, соответственно, потерю высоты. Не стоит энергично разворачивать купол низко над землей.

Горизонтальная скорость всегда измеряется относительно воздуха, из-за того, что ветер изменяет горизонтальную скорость парашюта относительно земли. Чтобы лучше понять это, можно сравнить парашют с лодкой, плывущей в реке с сильным течением. Если плыть против течения, то скорость лодки относительно берега будет медленной, если плыть по течению, то быстрой. Также и парашют, летящий против ветра, будет двигаться относительно земли медленнее, чем парашют, летящий по ветру, хотя относительно воздуха их скорость будет одинакова.

Чтобы внести ясность, о какой горизонтальной скорости идет речь, различают воздушную скорость и путевую. Воздушная - это скорость относительно воздуха, путевая - относительно земли.

Свободно летящий купол студенческого парашюта развивает воздушную скорость 8-9,5 метров в секунду и скорость снижения около 2,5 метра в секунду. Таким образом, даже при полностью отпущенных стропах управления, если приземляться против ветра, скорость будет безопасной. При полностью натянутых стропах управления купол практически не летит вперед, и падает со скоростью 7 метров в секунду.

СТРАХУЮЩИЙ ПРИБОР

Страхующий прибор (AAD Automatic Activation Device) - это устройство, единственной задачей которого является спасение жизни парашютиста. Приборы бывают разной конструкции и отличаются алгоритмом работы, но основной принцип у всех одинаков: принудительное открытие запасного парашюта на заданной высоте.

Наиболее известны приборы CYPRES, ASTRA, VIGIL. Однако наиболее распространенным на сегодняшний день является CYPRES. Именно CYPRES используется в студенческих системах в нашем клубе, поэтому именно о нем и пойдет речь далее.

Похожие статьи:

poznayka.org


Смотрите также



(89088)-732-232
 

с 11:00 до 18:00 (время тюменское

+ 2 Москвы )

Карта Сайта